Back to Top

Double Integral Examples

Easy
Medium
Hard

Double integral calculator with steps

Double integral calculator is used to solve the antiderivative of two-variable functions. This double integration calculator finds 2-dimensional integration with steps. 
It can calculate the problems of the double definite integral as well as a double indefinite integral.

How does the Double integration Calculator work?

Second integral calculator is an easy-to-use tool. Follow the below steps to calculate the second integral. 

  • Select the option first, definite or indefinite.
  • Enter the two-variable function into the input box.
  • Use the keypad icon keypad icon to enter mathematical symbols.
  • Enter the upper and lower limits of both the variables, in the case of the definite integral.
  • Select the order of variables i.e., dxdy or dydx.
  • Press the calculate key to get the result.
  • Hit the reset key to enter a new function.

What is double integral?

A double integral is a type of integral having a two-variable function f(x, y) used to find the volume between the graph and a rectangular region of the xy-plane by taking an integral of an integral. The process of finding the double integral is known as double integration.

Types:

  • Definite integrals
  • Indefinite integrals

The equation of double definite integral:

\( \int _{y_1}^{y_2}\left(\int _{x_1}^{x_2}f\left(x,y\right)dx\right)dy\)

The equation can also be written in other way if you want to calculate the second variable first.

\(\int _{x_1}^{x_2}\left(\int _{y_1}^{y_2}f\left(x,y\right)dy\right)dx\)

But in the case of indefinite integral, the upper and lower limits are not used.

\(\int\int f\left(x,y\right)dxdy\)

In these equations,

  • f(x, y) is the double variable function.
  • \(x_1,\:x_2,\:y_1,\:and\:y_2\) are the upper and lower limits of double variable functions.
  • And dx & dy are the variables of integration. 

How to calculate the double integrals?

Following are a few examples of double integrals solved by our double integrals calculator.

Example 1: For the definite integral

Find the double integral of \(x^2+2y^2\) w.r.t x & y having limits from 1 to 3 for x and 2 to 4 for y.

Solution

Step 1: Write the given function along with the double integral notation.

\(\int _2^4\int _1^3\left(x^2+2y^2\right) dxdy\)

Step 2: Integrate the above expression w.r.t "x".

\(\int _2^4\left(\int _1^3\left(x^2+2y^2\right)dx\right)dy\)

\(\int _2^4\left(\int _1^3x^2dx+\int _1^3 2y^2dx\right)dy\)

\(\int _2^4\left(\left[\frac{x^{2+1}}{2+1}\right]^3_1+\left[2y^2x\right]^3_1\right)dy\)

\(\int _2^4\left(\frac{1}{3}\left[x^3\right]^3_1+2y^2\left[x\right]^3_1\right)dy\)

Apply the Fundamental theorem of calculus. 

\(\int _2^4\left(\frac{1}{3}\left[3^3-1^3\right]+2y^2\left[3-1\right]\right)dy\)

\(\int _2^4\left(\frac{1}{3}\left[27-1\right]+2y^2\left[3-1\right]\right)dy\)

\(\int _2^4\left(\frac{26}{3}+4y^2\right)dy\)

Step 3: Now integrate w.r.t "y".

\(\int _2^4\frac{26}{3}dy+\int _2^44y^2dy\)

\(\left[\frac{26}{3}y\right]^4_2+\left[4\frac{y^{2+1}}{2+1}\right]^4_2\)

\(\frac{26}{3}\left[y\right]^4_2+\frac{4}{3}\left[y^3\right]^4_2\)

\(\frac{26}{3}\left[4-1\right]+\frac{4}{3}\left[4^3-2^3\right]\)

\(\frac{26}{3}\left[3\right]+\frac{4}{3}\left[64-8\right]\)

\(\left(26+\frac{4}{3}\left[56\right]\right)\)

\(26+\frac{224}{3}\)

\(\frac{302}{3}\)

\(100.67\)

Step 4: Now write the input with result.

\(\int _2^4\int _1^3\left(x^2+2y^2\right)dxdy=100.67\)

Example 2: For indefinite integral.

Find the double integral of xy with respect to x & y

Solution

Step 1: Write the given function along with the double integral notation.

\( \int \int xy\ dxdy\)

Step 2: Integrate the above expression w.r.t "x".

\(\int \left(\int {xy}dx\right)dy \)

\( \int \left(y\int x dx\right)dy\)

\(\int \left(y\left(\frac{x^2}{2}\right)+c_1\right)dy\)

\( \int \left(\frac{x^2\text{y}}{2}+c_1\right)dy \)

Step 3: Now integrate w.r.t "y".

\( \frac{x^2}{2}\int \text{y dy}+\int c_1dy \)

\( \frac{x^2}{2}\left(\frac{y^2}{2}\right)+c_1y+c_2\)

\( \frac{x^2y^2}{4}+c_1y+c_2\)

Step 4: Now write the input with result.

\(\int \int xy dxdy=\frac{x^2y^2}{4}+c_1y+c_2\)

Resources

 

Use android or iOS app of our limit calculator on your mobile

Download Download
Limit Calculator
X
loading...