L'hopital's Rule Calculator is used to find the limits of the undefined functions. This calculator takes the derivatives of the undefined function and put the limit value to get the numerical result.
Follow the below steps to find the limits of function using L'hopital's rule.
In calculus, L'hopital's rule is a theorem of limits that helps us to calculate undefined limits of the form of \(\frac{0}{0}\:or\:\frac{\infty }{\infty }\)
In simple words, L'hopital's rule helps us to find the \(\lim _{x\to a}\left(\frac{g\left(x\right)}{h\left(x\right)}\right)\:\)
Where \(\lim _{x\to a}\:g\left(x\right)=\lim _{x\to a}\:h\left(x\right)=0\:or\:\left(\infty \:,-\infty \right)\)
According to this rule, if the derivatives of the functions exist then two limits are equivalent. The general formula of this rule is given below.
\(\lim _{x\to a}\left(\frac{g\left(x\right)}{h\left(x\right)}\right)=\lim _{x\to a}\left(\frac{g'\left(x\right)}{h'\left(x\right)}\right)\)
Following is an example of this rule solved by our L'hospital calculator.
Example 1
Evaluate \(\lim _{x\to 0}\left(\frac{sin\left(x\right)}{x}\right)\).
Solution
Step 1: Apply the limit value and put 0 in the place of x.
\(\lim _{x\to 0}\left(\frac{sin\left(x\right)}{x}\right)=\frac{sin\left(0\right)}{0}\)
\(\lim _{x\to 0}\left(\frac{sin\left(x\right)}{x}\right)=\frac{0}{0}\)
Step 2: Use the L'hopital's rule as the given function gives \(\frac{0}{0}\) form.
\(\lim _{x\to 0}\left(\frac{sin\left(x\right)}{x}\right)=\lim \:_{x\to \:0}\left(\frac{\frac{d}{dx}sin\left(x\right)}{\frac{d}{dx}x}\right)\)
\(\lim _{x\to 0}\left(\frac{sin\left(x\right)}{x}\right)=\lim _{x\to 0}\left(\frac{cos\left(x\right)}{1}\right)\)
\(\lim _{x\to 0}\left(\frac{sin\left(x\right)}{x}\right)=\lim _{x\to 0}\left(cos\left(x\right)\right)\)
\(\lim _{x\to 0}\left(\frac{sin\left(x\right)}{x}\right)=cos\left(0\right)=1\)
Example 2
Evaluate \(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)\)
Solution
Step 1: Substitute the limit value in the function.
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\frac{9\left(\infty \right)+21}{3\left(\infty \right)+4}\)
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\frac{\infty +21}{\infty \:+4}=\frac{\infty }{\infty }\)
Step 2: Use the L'hopistal's rule to find the limit of \(\frac{\infty }{\infty }\) function.
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\lim _{x\to \infty \:}\left(\frac{\frac{d}{dx}\left(9x+21\right)}{\frac{d}{dx}\left(3x^2+4\right)}\right)\)
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\lim _{x\to \infty \:}\left(\frac{\frac{d}{dx}9x+\frac{d}{dx}21}{\frac{d}{dx}3x^2+\frac{d}{dx}4}\right)\)
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\lim _{x\to \infty \:}\left(\frac{9+0}{6x+0}\right)\)
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\lim _{x\to \infty \:}\left(\frac{9}{6x}\right)\)
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\frac{9}{6\left(\infty \right)}\)
\(\lim _{x\to \infty }\left(\frac{9x+21}{3x^2+4}\right)=\frac{9}{\infty }=0\)
Khan Academy. (n.d.). What is L'Hôpital's Rule? . Khan Academy.
Examples of L'hopital's rule | L'Hopital's rule. (n.d.).